Efficient In-Database Analytics with Graphical Models

نویسندگان

  • Daisy Zhe Wang
  • Yang Chen
  • Christan Earl Grant
  • Kun Li
چکیده

Due to recent application push, there is high demand in industry to extend database systems to perform efficient and scalable in-database analytics based on probabilistic graphical models (PGMs). We discuss issues in supporting in-database PGM methods and present techniques to achieve a deep integration of the PGMmethods into the relational data model as well as the query processing and optimization engine. This is an active research area and the techniques discussed are being further developed and evaluated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translating Bayesian Networks into Entity Relationship Models, Extended Version

Big data analytics applications drive the convergence of data management and machine learning. But there is no conceptual language available that is spoken in both worlds. The main contribution of the paper is a method to translate Bayesian networks, a main conceptual language for probabilistic graphical models, into usable entity relationship models. The transformed representation of a Bayesia...

متن کامل

Graphical Models for Uncertain Data

Graphical models are a popular and well-studied framework for compact representation of a joint probability distribution over a large number of interdependent variables, and for efficient reasoning about such a distribution. They have been proven useful in a wide range of domains from natural language processing to computer vision to bioinformatics. In this chapter, we present an approach to us...

متن کامل

Chapter 4 GRAPHICAL MODELS FOR UNCERTAIN DATA

Graphical models are a popular and well-studied framework for compact representation of a joint probability distribution over a large number of interdependent variables, and for efficient reasoning about such a distribution. They have been proven useful in a wide range of domains from natural language processing to computer vision to bioinformatics. In this chapter, we present an approach to us...

متن کامل

Probabilistic Graphical Models and their Role in Databases

Probabilistic graphical models provide a framework for compact representation and efficient reasoning about the joint probability distribution of several interdependent variables. This is a classical topic with roots in statistical physics. In recent years, spurred by several applications in unstructured data integration, sensor networks, image processing, bio-informatics, and code design, the ...

متن کامل

Application of Big Data Analytics in Power Distribution Network

Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Data Eng. Bull.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2014